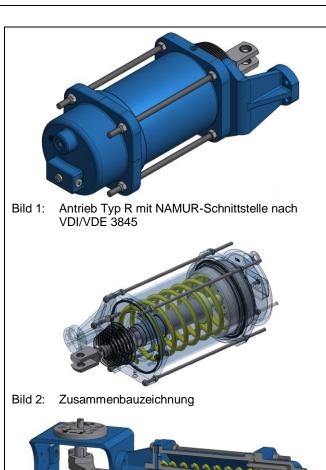


FAI

VETEC pneumatsicher Schwenkantrieb Typ R

Anwendung

Zur automatischen Betätigung von Drehkegelventilen, Kugelhähnen und Klappen.


Einsatz	Regel- und Auf/Zu-Anwendung
Ausführung	Rollmembran mit innenliegenden Federn • einfachwirkend
Antriebsbewegung	Schwenk
Baugrößen-Standard	R110, R150, R200, R250
Baugrößen mit verstärkten Federn	R110v, R150v, R200v, R250v, R250vv

Merkmale

- → Robust und kompakt
- → Präzise Regelung
- → Optional Schwenkwinkelbegrenzung (extern einstellbare mechanische Endanschläge)
- → Optimierte Federbereiche
- → Hohe Drehmomente (Stellkraft)
- → Einsetzbar bei Temperaturen von -40 bis +80 °C
- → NAMUR-Schnittstelle für Anbaugeräte nach VDI/VDE 3845-1
- → Ventilschnittstelle nach DIN EN ISO 5211
- → Modularer Aufbau (mit Handgetriebe /Handrad/Zubehör)
- → Geeignet für explosionsgefährdete Bereiche

Konstruktion

Die Antriebskonstruktion ermöglicht den Einsatz bei Armaturen mit unterschiedlichen Schwenkwinkeln bis 75°. Der Antrieb ist somit optimal auf die VETEC-Drehkegelventile abgestimmt.

70700000

Bild 3: Drehkegelventil mit Antrieb Typ R, Anbauart A, Feder schließt (FC)

Montagesätze

Ein Bügel oder Konsole verbindet Antrieb und Ventil. An diesen Bügel oder Konsole kann ein Handrad sowie der Stellungsregler oder andere Anbauteile angebaut werden.

Montagesatz mit Anschlüssen nach DIN EN ISO 5211:

Bild 4

Montagesatz mit Anschlüssen nach VETEC-Standard: Optional extern einstellbare mechanische Endanschläge

Bild 5

■ Handnotbetätigungen und Zubehör

Der Antrieb vom Typ R kann mit zusätzlicher Handnotbetätigung und Zubehör montiert werden:

- → Handgetriebe ab Baugröße R200v (Bild 8)
- → Handrad bis Baugröße R200 (Bild 9)

Die Montage von Zubehör erfolgt nach VDI/VDE 3845-1 (EN 15714-3).

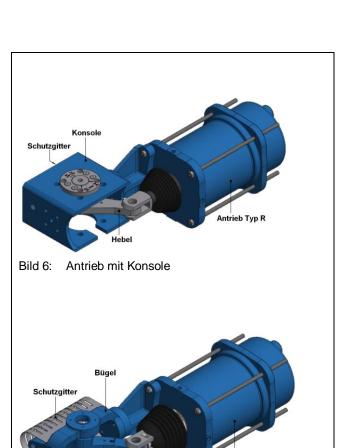


Bild 7: Antrieb mit Bügel

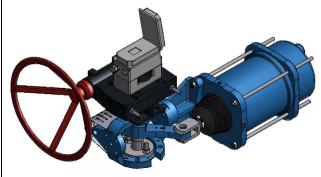


Bild 8: Antrieb mit Bügel und Handgetriebe

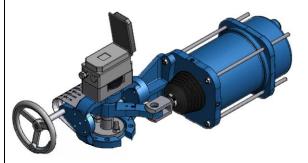


Bild 9: Antrieb mit Bügel und Handrad

Wirkungsweise

Der Antrieb ist mit einer Rollmembran und einer oder zwei zentral angeordneten Druckfedern ausgestattet

Die beweglich gelagerte Kolbenstange ist direkt mit dem Hebel für die Ventilwelle verbunden.

Aufgrund des langen Hubs und des reibungsarmen Fahrwegs wird eine präzise Regelung realisiert.

Die Sicherheitsstellung des Stellgerätes bei Hilfsenergieausfall ist durch die Federrückstellkraft gewährleistet:

Federkraft schließt (FC) - bei Ausfall der Hilfsenergie wird das Ventil geschlossen Federkraft öffnet (FO) - bei Ausfall der Hilfsenergie wird das Ventil geöffnet

■ Luftmomente (Schwenkwinkel 75°)

Wird der Antrieb mit Druckluft beaufschlagt, so bewirkt dies eine Komprimierung der Druckfeder und eine Drehbewegung der Welle (Bild 10). Das Drehmoment/Luftmoment wird über den Luftdruck erzeugt.

Federmomente (Schwenkwinkel 75°)

Wird der Antrieb entlüftet, entsteht durch die Federrückstellkraft eine Drehbewegung der Welle (Bild 11). Das Drehmoment/Federmoment wird über die Federrückstellkraft erzeugt.

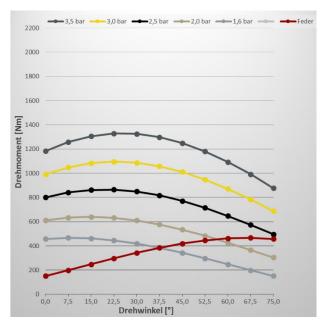


Bild 12: Drehmomente für Baugröße R200

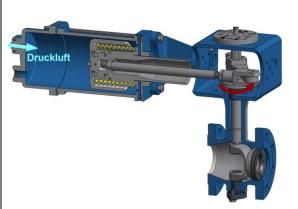


Bild 10: Luftmoment bewirkt die Drehbewegung der Welle

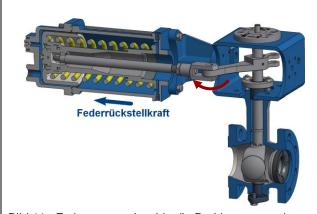


Bild 11: Federmoment bewirkt die Drehbewegung der Welle

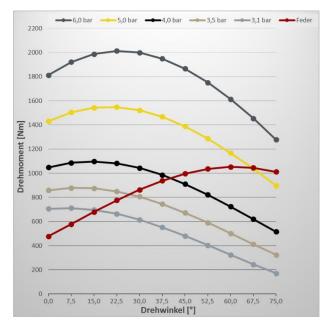


Bild 13: Drehmomente für Baugröße R200v

■ Technische Daten

Tabelle 1

Standard-Baug	rößen	R110	R150	R200	R250		
Federbereich für	Drehwinkel 75° [bar]	0,4 bis 1,2	0,4 bis 1,2	0,4 bis 1,2	0,4 bis 1,2		
Anzahl der Fede	rn		1				
Federmoment be	ei 0° [Nm]	28	77	152	241		
Nennhub [mm]		128	184	200	200		
Hubvolumen bei	Nennhub [dm³]	2,3	6,2	12,1	19,0		
Totvolumen [dm³]		0,16	0,28	0,48	0,66		
Antriebsfläche (M	Membran) [cm²]	87	165	299	471		
Richtwerte für	Stellungsregler K _V = 0,15	4,5	12	23	37		
Stellzeiten (1) beim Entlüften	Magnetventil K _V = 0,32	2,1	5,6	11	17		
[s]	Booster K _V = 0,74			4,7	7,4		

⁽¹⁾ Stellzeiten wurden wie folgt ermittelt: Schwenkwinkel 75°, 4 bar Luftdruck. Bei abweichenden Betriebsbedingungen ändern sich die Stellzeiten.

Tabelle 2

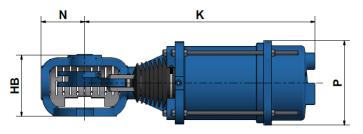
Federverstärkte Ausführungen		R110v	R150v	R200v	R250v	R250vv
Federbereich für	r Drehwinkel 75° [bar]	1,16 bis 2,76	0,92 bis 2,76	1,25 bis 2,65	1,30 bis 2,40	1,70 bis 3,30
Anzahl der Fede	ern			1		2
Federmoment b	ei 0° [Nm]	82	178	477	783	1024
Nennhub [mm]		128	184	200	200	200
Hubvolumen bei Nennhub [dm³]		2,3	6,2	12,1	19,0	19,0
Totvolumen [dm³]		0,16	0,28	0,48	0,66	0,66
Antriebsfläche (Membran) [cm²]		87	165	299	471	471
Richtwerte für	Stellungsregler K _V = 0,15	3,4	9,8	17	26	25
Stellzeiten (1) beim Entlüften	Magnetventil K _V = 0,32	1,6	4,6	8,1	12	11
[s]	Booster K _V = 0,74			3,5	5,3	5,0

⁽¹⁾ Stellzeiten wurden wie folgt ermittelt: Schwenkwinkel 75°, 4 bar Luftdruck. Bei abweichenden Betriebsbedingungen ändern sich die Stellzeiten.

Tabelle 3

I abelle 3	
Schwenkwinkel	75°
Feder	Zentral gelagert
Zuluftdruck [bar]	2 bis 6 ▶ abhängig von Antriebsbaugröße und Federbereich
Temperatureinsatzbereich [°C]	-40 bis +80
Handnotbetätigung	Handgetriebe/Handrad
Differenzdrücke Antriebsauslegung	►TY005.069
Schwenkwinkelbegrenzung (optional)	Extern einstellbare mechanische Endanschläge
Wellenanschluss	Passfedernut. Andere Anschlüsse auf Anfrage.
Beschichtung (Lackierung) (2)	Standard: Nasslackierung, Schichtdicke 120 µm

⁽²⁾ Andere Beschichtungssysteme auf Anfrage möglich ▶EB005.060



Maße und Gewichte

Tabelle 4: Antrieb mit Bügel/Anschlüsse nach VETEC-Standard

Tabelle 4. Alltile	B IIIIC Bagonii ai	Comaco macm	VETEO Otalia	a. G		
Antrieb Maße	R110 ⁽³⁾ DN 25	R110/R110v	R150/R150v	R200/R200v	R250	R250v/R250vv
K [mm]	484	508	624	701	741	827
L [mm]	83	83	119	126	126	126
N [mm]	75	100	100	130	130	130
P [mm]	149	149	187	253	300	300
HB [mm]	117	142	142	185	185	185
Gewicht [kg]	14	16/16,5	27/28	45/47	72	75/86
Ventilanschluss nach VETEC- Standard	VF10	VF10/VF12	VF12/VF16		VF12/VF16/VF17	

(3) Die Werte betreffen den Antrieb für Ventilnennweite DN 25

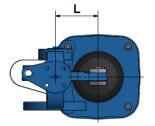
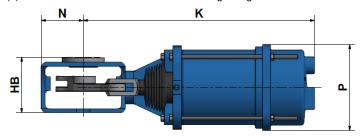



Bild 14: Maßzeichnung für Antriebe Typ R mit VETEC-Bügel

Tabelle 5: Antrieb mit Konsole/Anschlüsse nach DIN EN ISO 5211

Typ Maße	R110/R110v	R150/R150v	R200/R200v	R250	R250v/R250vv
K [mm]	491	615	682/687*	732	816/821*
L [mm]	86	120	127	126	126
N [mm]	89	99	124/129*	124/129*	124/129*
P [mm]	149	187	246	300	300
HB [mm]	135	163	165/195*	165/195*	165/195*
Gewicht [kg]	17.5/18	29/30	52/54	79	82/93
Ventilan- schluss ⁽⁴⁾ nach DIN EN ISO 5211	F12/F14/F16	F12/F14/F16	F12/F14/F16/F17	F12/F14/F16/F17	F12/F14/F16/F17

Abhängig vom Flanschanschluss Andere Ventilanschlüsse auf Anfrage möglich (4)

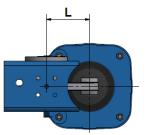


Bild 15: Maßzeichnung für Antriebe Typ R mit Konsole

Tabelle 6: Luftanschlüsse

Тур	R110/R110v	R150/R150v	R200/R200v	R250/R250v/R250vv
Luftanschlüsse NAMUR	G ¼	G 1⁄4	G 1/4	G 1⁄4
Luftanschlüsse	G 1/4	G ½	G ½	G ½
Entlüftungsanschlüsse	G 1/8	G ¼	G 1/4/G 1/8	G 1/4

Tabelle 7: Werkstoffe

Bauteil	Standard		Optional	
Zylinderrohr				
Oberer Deckel	Aluminium-Gusslegierui	ng	Stahl	
Unterer Flansch				
Faltenbalg	Weich-PVC			
Zuganker				
Sechskantmutter	Stahl		Edelstahl	
Gabelkopf				
Anschlussstück	Sphäroguss (Gusseisen mit Kugelgraphit)			
Antriebsspindel	nichtrostender martensitischer Stahl			
Druckfeder	Federstahl			
Membrane	NBR Acrylnitril-Butadien-Kautschuk			
Dichtungen	Aramidfasern gebunden mit Kautschukgemisch			
Ersatzteilzeichnungen	R110/R110v ►ET019.003	R150/R150v	► ET019.004	R200/R200v ► ET019.005
	R250 ► ET019.006	R250v ► ET0	19.007	R250w ► ET019.008

Weitere Werkstoffe auf Anfrage

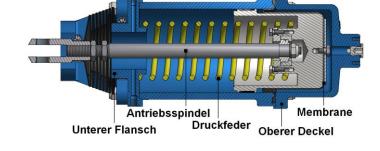
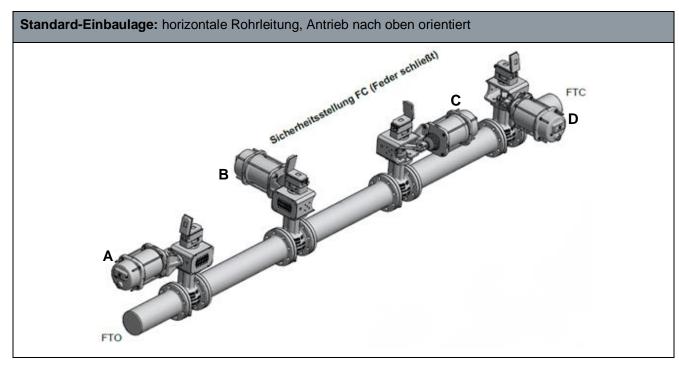


Bild 16: Schnitt- und Modellzeichnung mit Bauteilen

Anbauarten (Montagestellungen des Antriebs)


Antriebe Typ R können in den Anbauarten A, B, C oder D am Ventil montiert werden (Bild 17).

■ Einbaulagen des Stellventils

Antriebe Typ R können in beliebiger Einbaulage betrieben werden.

Achtung! Einbauvorschriften des Zubehörs sind zu beachten.

Zur korrekten Auslegung des Antriebs muss bei der Bestellung des Stellventils die vom Standard abweichende Einbaulage spezifiziert werden.

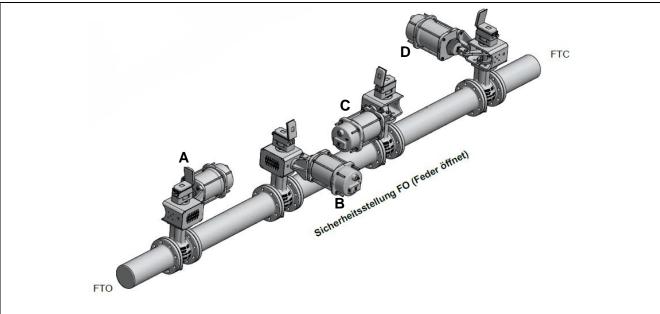


Bild 17: Anbauarten des Antriebs und Einbaulagen des Stellventils

Tabelle 8: Zertifikate, Herstellererklärungen

RL 2014/34/EU (ATEX)	Herstellererklärung FB002.014	Ausgenommen vom Geltungsbereich nach Zündgefahrenbewertung gemäß DIN EN 13463-1:2001, Abs. 5.2
RL 2014/68/EU (DGRL)	Herstellererklärung FB002.045	Ausgenommen vom Geltungsbereich nach Art. 1, § 2, Buchstabe j)
RL 2006/42/EG (MRL)	Einbauerklärung FB002.000	Unvollständige Maschine
IEC 61508/IEC 61511 (SIL)	Herstellererklärung FB002.012	Anwendbar bis SIL 2 und bei redundanter Verschaltung bis SIL 3
TP TC 010/2011 (EAC)	Zertifikat FB002.135 (RU C-DE.AЯ04.B.00339)	Sicherheit von Maschinen und Geräten (RU, BLR, KAZ)
TP TC 012/2011 (EAC/Ex)	Zertifikat FB002.152 (RU C-DE.ΓБ08.B.02294)	Sicherheit von Geräten, für den Einsatz in explosionsgefährdeten Bereichen (RU, BLR, KAZ)

Tabelle 9: Bestellangaben

Tabelle 3. Destellallyabell	
Antriebsbaugröße	It. Tabelle 1 und Tabelle 2
Montagestellung Antrieb	It. Bild 17 oder auf Anfrage
Einbaulage Ventil	It. Bild 17 oder auf Anfrage
Sicherheitsstellung	Feder schließt (FC)/Feder öffnet (FO)
Max. Differenzdruck	bar (lt. TY005.069)
Zuluft	bar
Stellzeiten	\$
Sonstiges	Sonderausführung, Beschichtung, technische Dokumentation usw.

VETEC Ventiltechnik GmbH Siemensstraße 12 · 67346 Speyer, Germany Telefon: +49 62 32 64 12-0 · Fax: +49 62 32 4 24 79 · E-Mail: vetec@vetec.de · Internet: www.vetec.de

Hinweis: Irrtum und Änderungen vorbehalten