TYPENBLATT TY005.004 DE

Baureihe 73 · Drehkegelventil Typ 73.7 (Hochdruck)

C € FHI

Doppelexzentrisches Stellventil für Verfahrenstechnik und Anlagenbau

Nennweite DN 25 bis 500 NPS 1 bis 20

Nenndruck PN 63 bis 160 Class 600 und 900, 1500*, 2500*

Temperatur -196 to +500 °C -321 to +932 °F Verschiedene Ausführungen (siehe Seite 3)

Ventilgehäuse aus

- Stahlguss
- · Korrosionsfestem Stahlguss
- Sonderwerkstoffe auf Anfrage

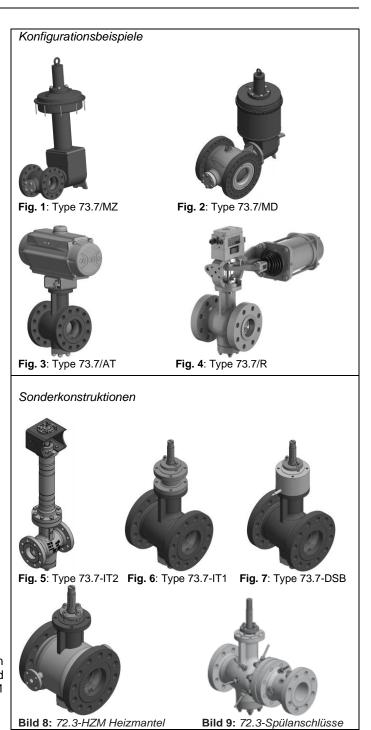
Sitzausführung

- Metallisch gepanzert oder ungepanzert
- Weichdichtend
- Standard Faktoren: F 1 / 0.6 / 0.4 / 0.25

Ausführung

Flanschbauweise

- DN 25 PN 63 bis 160, Baulängen nach EN 558 Tabelle 2 Reihe 2
- DN 40 bis 500 PN 63 bis 160, Baulängen nach EN 558 Tabelle 2 Reihe 15
- NPS 1 Class 600, Baulängen nach EN 558 Tabelle 2 Reihe 39
- NPS 1 Class 900, Baulängen nach EN 558 Tabelle 2 Reihe 54
- NPS 1,5 bis 20 Class 600 bis 900, Baulängen nach EN 558 Tabelle 2 Reihe 15


Weitere Ausführungen

Weitere Ausführungen

- Mit Temperaturverlängerung für kryogene Anwendungen (IT2), Bild 5
- Mit Hoch- und Tieftemperaturverlängerung (IT1) Bild 6
- Doppelstopfbuchse (DSB), Bild7
- Heizmantel (HZM), Bild 9
- Spülanschlüsse (nur DN 25), Bild 8
- TA-Luft-Stopfbuchse
- Sonderwerkstoffe für Gehäuse und Garnitur
- Schallreduzierende Maßnahmen
- Flanschausführung mit Nut/Feder oder Vorsprung/Rücksprung nach EN 1092-1
- RF und RTJ nach ANSI B16.5

Die Stellventile können mit verschiedenen Peripheriegeräten ausgerüstet werden: Stellungsregler, Magnetventile und andere Anbaugeräte. Schnittstelle nach DIN EN 60534-6-1 und VDI/VDE 3845.

Erstellt: September 2013

Rev.: 13 / 21.07.2023

^{*} Abhängig von der Ventilgröße. Andere Druckstufen auf Anfrage.

Wirkungsweise

Die Lagerung der Welle in Verbindung mit dem Kegel ist exzentrisch angeordnet (Bild 10 und 11). Zusammen mit dem Drehpunkt-Versatz des Kegels wird die doppelexzentrische Geometrie des Drehkegelventils realisiert. Diese doppel-exzentrische Lagerung bewirkt bei einer Drehung der Kegelwelle von der Schließstellung in Öffnungsrichtung ein sofortiges reibungsloses Abheben des Kegels vom Sitz ohne Losbrechmoment. Das Ventil öffnet nicht schlagartig und zeigt daher ein stabiles Regelverhalten bei kleinen Öffnungswinkeln. Das Drehkegelventil kann von beiden Seiten durchströmt werden.

Durchflussrichtung

Das Ventil kann von beiden Seiten angeströmt werden:

FTC = Medium schließt

FTO = Medium öffnet

Bei Gasen und Dämpfen wird das Ventil von hinten angeströmt - Medium schließt (FTC).

Der Durchflusskennwert richtet sich nach dem Öffnungswinkel des Kegels.

Die natürliche Kennlinie der Drehkegelventile kann mit Hilfe von Stellungsreglern oder Kurvenscheiben in eine lineare oder gleichprozentige Kennlinie umgeformt werden (Bild 12 und 13).

Sicherheitsstellung

Mit den Schwenkantrieben Typ R/M/Fremd hat das Stellventil zwei Sicherheitsstellungen, die bei Druckentlastung des Kolbens/der Membran sowie bei Ausfall der Hilfsenergie wirksam werden:

FC = Stellventil ohne Hilfsenergie ZU, bei Hilfsenergieausfall wird das Drehkegelventil geschlossen.

FO = Stellventil ohne Hilfsenergie AUF, bei Hilfsenergieausfall wird das Drehkegelventil geöffnet.

Einbau

Bei Einbau des Ventils in die Rohrleitung ist auf die durch Pfeil gekennzeichnete Durchflussrichtung zu achten.

Bild 10: Kegelbewegung bei doppelexzentrischer Lagerung

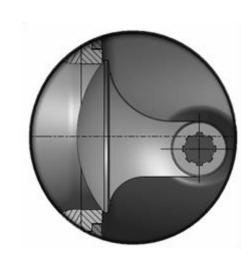


Bild 11: Doppelexzentrisches Prinzip

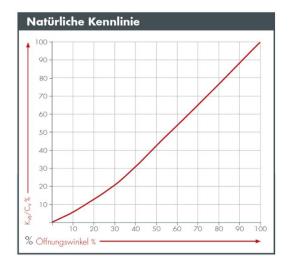


Bild 12: Natürliche Kennlinie

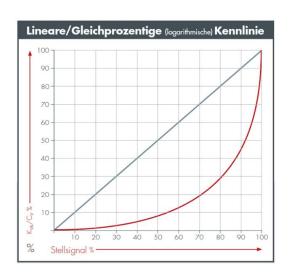


Bild 13: Gleichprozentige und lineare Kennlinie

Tabelle 1: Technische Daten

Тур			7-	3.7					
Nennweite		DN 25	bis 500	NPS 1	bis 20				
Bauform		Flai	nsch	Flansch					
Nenndruck	Flansch	PN 63 /	100 /160	CL 600 / 900					
Max. Betrie	ebsdruck	160	bar	160 bar					
		DN 25	DN 40 bis 500	NPS 1 (nur 600lbs)	NPS 1,5 bis 20				
Baulänge		EN 558 Tabelle 2 Reihe 2							
Flanschbol	hrung / Flanschform	DIN EN 1092-1	B2 / DIN 2696	ASME	B16.5				
Sitzring									
			on vorne: FTO	Anströmung vo					
Kennlinie		gle	gleichprozentig oder linear (mittels Stellungsregler)						
Stellverhäl	tnis		Bis zu 200:1						
Öffnungsw	inkel		7	'5°					
Kegelbewe	egung	Schließt gegen den Uhrzeigersinn							
Leckage-K	lasse gemäß	Standard – met	allisch dichtend	Optional - we	eichdichtend				
DIN EN 60534-4		יו	V	V	Ί				
Temperatu	rbereich in °C		-196 b	is +500					
	Ohne Isolierteil		-40	. +350					
Gehäuse	Mit Isolierteil IT1		-10040	/ 350 500					
	Mit Isolierteil IT2		-196100						

Tabelle 2: Standardwerkstoffe

Gehäuse (100)	1.0619 -10 +400 °C		216 WCC) +400 °C		408/A351 CF8M 196 +500 °C	300
Kegel (200)	R30006 (Stelliter -10 +400 °C			1.4408 (stellitiert) -196 +500 °C		644/645
Welle (300)	1.4542 (17-4PH -29 +315 °C		1.4404 -196 +400	°C	1.4980 -196 +500 °C	620/621
Lagerzapfen (400)	1.440	4 (ste	ellitiert); 1.440	8 (st	ellitiert)	100
Sitzring (500)	1.440	4 (ste	ellitiert); 1.440	8 (st	ellitiert)	200
Gewindering (501)			1.4404; 1.440	8		500/
Packung (620/621)	PTFE/Graphi -29 +280 °0				, Aramid +500 °C	501
O-Ring (644/645)			FPM 80			
Dichtungen			VA/Graphite	l		400

Tabelle 3: Kvs- und Cv-Werte

3a. Metallischer Sitz - FTO

DN in mm		25	40	50	80	100	150	200	250	300	400	500
DN in NPS		1	11/2	2	3	4	6	8	10	12	16	20
Durchfluss												
	Kvs	16	36	70	220	360	720	1100	1950	2700	4700	6700
100%	Cv	18	42	81	254	416	832	1272	2254	3121	5434	7746
	Sitz Ø mm	18	26	36	60	76	105	135	170	210	290	350
	Kvs	12	22	43	145	210	430	630	1230	1500	2700	3800
60%	Cv	14	25	50	168	243	497	728	1422	1734	3121	4393
	Sitz Ø mm	16	21,5	29,5	50	60	86	106	146	163	225	271
	Kvs	10	16	31	105	150	275	390	850	900	1600	2300
40%	Cv	12	18	36	121	173	318	451	983	1040	1850	2659
	Sitz Ø mm	14	18,5	25,5	44	53	73	88	126	133	184	221
	Kvs	4	12	19	70	100	185	245	500	640	1100	1250
25%	Cv	4,6	14	22	81	116	214	283	578	740	1272	1445
	Sitz Ø mm	10	16	21	37	45	62	73	102	116	160	175

3b. Metallischer Sitz - FTC

DI	N in mm	25	40	50	80	100	150	200	250	300	400	500
DN	l in NPS	1	11/2	2	3	4	6	8	10	12	16	20
Durchfluss		•										
	Kvs	16	36	70	210	340	660	810	1300	2100	3400	4800
100%	Cv	18	42	81	243	393	763	936	1503	2428	3931	5549
	Sitz Ø mm	18	26	36	60	76	105	135	170	210	290	350
	Kvs	12	22	43	135	200	320	410	820	900	1800	2700
60%	Cv	14	25	50	156	231	370	474	948	1040	2081	3121
	Sitz Ø mm	16	21,5	29,5	50	60	86	106	146	163	225	271
	Kvs	10	16	31	95	120	185	250	540	570	1120	1600
40%	Cv	12	18	36	110	139	214	289	624	659	1295	1850
	Sitz Ø mm	14	18,5	25,5	44	53	73	88	126	133	184	221
	Kvs	4	12	19	56	90	125	160	320	410	860	870
25%	Cv	4,6	14	22	65	104	145	185	370	474	994	1006
	Sitz Ø mm	10	16	21	37	45	62	73	102	116	160	175

3c. Weichsitz - FTC

DN in mm	25	40	50	80	100	150	200	250	300	400	500
DN in NPS	1	11/2	2	3	4	6	8	10	12	16	20

Durchfluss

Duicilluss												
	Kvs	12	40	68	180	290	535	730	1220	2000	2700	4800
100%	Cv	14	42	79	208	335	618	844	1410	2312	3121	5549
	Sitz Ø mm	16	26	35	54	70	98	128	158	204	270	350
	Kvs	11	22	43	135	200	320	410	820	900	1800	2700
60%	Cv	13	25	50	156	231	370	474	948	1040	2081	3121
	Sitz Ø mm	15	21,5	29,5	50	60	86	106	146	163	225	271
	Kvs	10	16	31	105	120	185	250	540	570	1120	1600
40%	Cv	12	18	36	121	139	214	289	624	659	1295	1850
	Sitz Ø mm	14	18,5	25,5	46	53	73	88	126	133	184	221
	Kvs	4	12	19	56	90	125	160	320	410	860	870
25%	Cv	4,6	14	22	65	104	145	185	370	474	994	1006
	Sitz Ø mm	10	16	21	37	45	62	73	102	116	160	175

Tabelle 4. Gewicht in kg (ohne Stellantrieb)

DN	25	40	50	80	100	150	200	250	300	400	500
NPS	1	11/2	2	3	4	6	8	10	12	16	20
Gewicht in kg	16	28	36	55	73	165	249	382	630	1209	2030

Tabelle 5. Baulänge DIN

	DN	25	40	50	80	100	150	200	250	300	400	500
PN 63	Länge											
PN 100	in	230	240	250	280	300	350	400	450	500	600	700
PN 160	mm	_30	0									

Tabelle 6. Baulänge ANSI

	NPS	1	11/2	2	3	4	6	8	10	12	16	20
CL 600	Länge in	210	240	250	280	300	350	400	450	500	600	700
CL 900	mm	254	2-70	230	230	330	550	430	430	330	000	700

Folgende Angaben sind bei der Bestellung erforderlich:

Тур	It. Tabelle
Nennweite	DN
Nenndruck	PN
Gehäusewerkstoff	It. Tabelle
Sitzausführung	metallisch dichtend
Kennlinienform	gleichprozentig oder linear
Kvs-/Cv-Wert	It. Tabelle
Anströmrichtung	Standard: Medium öffnet = FTO umgekehrt Medium schließt = FTC
Stellantrieb	Тур
Montageart / Montageart	Lage des Stellantriebes
Sicherheitsstellung	bei Hilfsenergieausfall Feder schließt Feder öffnet
max. Differenzdruck für Antrieb	bar
Zuluft	bar
Nenn-Signalbereich	bar
Zubehör	z.B. Regler / Endschalter / Magnetventil usw.
Sonstiges	z.B. Sonderausführung / Zeugnisse / Abnahmen/technische Dokumentation usw.

VETEC Ventiltechnik GmbH

Siemensstraße 12 · 67346 Speyer Telefon: 06232 6412-0 · Fax: 06232 42479 · E-Mail: sales-vetec-de@samsongroup.com · Internet: www.vetec.de