TYPENBLATT

T 2513

Universal-Druckminderer Typ 41-23

Druckregler ohne Hilfsenergie · Ausführung nach ANSI

Anwendung

Druckregler für Sollwerte von 0.75 bis $400 \text{ psi} \cdot \text{Ventile}$ in Nennweite NPS ½ bis $4 \cdot \text{Nenndruck Class } 125$ bis $300 \cdot \text{für flüssige}$, gas- und dampfförmige Medien bis $660 \, ^{\circ}\text{F}$

Das Ventil schließt, wenn der Druck nach dem Ventil steigt.

Charakteristische Merkmale

- Wartungsarmer, mediumgesteuert P-Regler; keine Hilfsenergie erforderlich
- Reibungsfreie Kegelstangenabdichtung mit korrosionsfestem Edelstahlbalg
- Steuerleitungsbausatz für den direkten Druckabgriff am Gehäuse als Zubehör
- Großer Sollwertbereich und bequeme Sollwerteinstellung an einer Sollwertmutter
- Antrieb und Sollwertfeder austauschbar
- Federbelastetes Einsitzventil mit Vor- und Nachdruckentlastung (bei C_V ≤ 3: ohne Entlastungsbalg) durch einen korrosionsfesten Edelstahlbalg
- Für hohe Anforderungen an die Dichtheit mit weich dichtendem Kegel
- Geräuscharmer Normalkegel
- Alle mediumsberührenden Teile buntmetallfrei

Die Universal-Druckminderer bestehen aus einem Durchgangsventil Typ 2412 und einem Membranoder Balgantrieb Typ 2413.

Ausführungen

Druckminderer zur Regelung des Nachdrucks p₂ auf den eingestellten Sollwert. Das Ventil **schließt**, wenn der Druck **nach** dem Ventil steigt.

Typ 41-23 · Standardausführung
 Ventil Typ 2412 · Ventil NPS ½ bis 4 · mit metallisch dichtendem Kegel · Gehäuse aus Grauguss A126B, Stahlguss A216 WCC oder korrosionsfestem Stahlguss A351 CF8M · Antrieb Typ 2413 mit EPDM-Rollmembran

Ausbaustufen

- **Druckminderer für geringe Durchflüsse** Ventil mit Mikrogarnitur ($C_V = 0,0012$ bis 0,05) oder C_V in Sonderausführung (Durchflussquerschnitt verengt)
- Dampfdruckminderer
 mit Ausgleichsgefäß für Wasserdampf bis 660
- Druckminderer mit erhöhter Sicherheit
 Antrieb mit Leckleitungsanschluss und Abdichtung oder Doppelmembran und Membranbruchanzeige

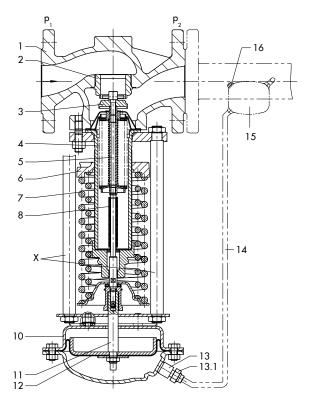
Sonderausführungen

- Steuerleitungsbausatz zum Druckabgriff am Gehäuse (Zubehör)
- mit Innenteilen aus FKM, z. B. für den Einsatz bei Mineralölen
- Antrieb für Sollwertfernverstellung (Autoklavenregelung)
- Balgantrieb für Ventile NPS ½ bis 4 · Sollwertbereiche 30 bis 85 psi, 75 bis 145 psi, 145 bis 320 psi, 300 bis 400 psi
- Ventil mit Strömungsteiler ST 1 oder ST 3
 (NPS 2½ bis 4) für besonders geräuscharmen
 Betrieb bei Gasen und Dämpfen (vgl. ► T 8081)
- komplett in korrosionsfester Ausführung
- Sitz und Kegel Cr-Stahl rostfrei mit PTFE-Weichdichtung (max. 430 °F) oder mit EPDM-Weichdichtung (max. 300 °F)
- Sitz und Kegel stellitiert[®] für verschleißarmen Betrieb
- Ausführung für technische Gase
- öl- und fettfrei für Reinstanwendungen
- FDA-Ausführung¹⁾
- Diese Ausführung ist nicht für den direkten Kontakt mit Produkten in der Lebensmittel- und Pharmaindustrie geeignet bzw. nur in produktnahen Anwendungen einsetzbar.

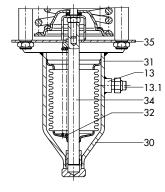
Aufbau und Wirkungsweise

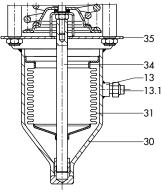
⇒ Vgl. Bild 1

Das Ventil (1) wird in Pfeilrichtung durchströmt. Die Stellung des Ventilkegels (3) beeinflusst dabei den Durchfluss über die zwischen Kegel und Ventilsitz (2) freigegebene Fläche. Die Kegelstange (5) mit Kegel ist mit der Antriebsstange (11) des Antriebs (10) verbunden.


Zur Druckregelung wird über die Sollwertfedern (7) und den Sollwertsteller (6) die Stellmembran (12) vorgespannt, so dass im drucklosen Zustand ($p_1 = p_2$) das Ventil durch die Kraft der Sollwertfedern geöffnet ist.

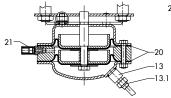
Der zu regelnde Nachdruck p_2 wird ausgangsseitig abgegriffen, über die Steuerleitung (14) auf die Stellmembran (12) übertragen und in eine Stellkraft umgeformt. Diese verstellt, abhängig von der Kraft der Sollwertfedern (7), den Ventilkegel (3). Die Federkraft ist am Sollwertsteller (6) einstellbar. Wenn die aus dem Nachdruck p_2 resultierende Kraft über den eingestellten Drucksollwert steigt, schließt das Ventil proportional zur Druckänderung.

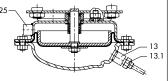

Das vollentlastete Ventil hat einen Entlastungsbalg (4), dessen Innenseite vom Nachdruck p₂ und dessen Außenseite vom Vordruck p₁ belastet wird. Dadurch werden die Kräfte kompensiert, die der Vorund der Nachdruck am Ventilkegel erzeugen.


2 T 2513

Universal-Druckminderer Typ 41-23, Schnittbild

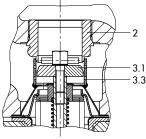
Antrieb Typ 2413, verschiedene Ausführungen



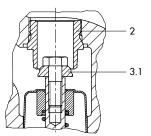

Balgantrieb:

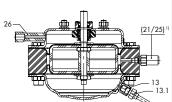
145 bis 320 psi · 300 bis 400 psi

Balgantrieb:


30 bis 85 psi · 75 bis 145 psi

Membranantrieb mit Doppelmembran für erhöhte Sicherheit


Membranantrieb mit Leckleitungsanschluss


Kegel metallisch dichtend,

3.2

Kegel weich dichtend

Kegel für kleine Durchflüsse, $C_v \le 3$ ohne Entlastungsbalg

Membranantrieb mit Doppelmembran für Autoklavenregler (Übersicht Anschlüsse Membranantrieb)

Bild 1: Wirkungsweise, Universal-Druckminderer Typ 41-23

Ventilgehäuse Typ 2412

mit Strömungsteiler ST1

- Sitz (austauschbar) 2
- 3 Kegel
- 3.1 Kegel metallisch dichtend
- 3.2 Kegel weich dichtend
- 3.3 Strömungsteiler
- 4 Entlastungsbalg
- 5 Kegelstange
- Sollwertsteller

- Sollwertfedern
- 8 Balgabdichtung
- 10 Antriebsgehäuse Typ 2413
- 11 Antriebsstange
- Stellmembran mit Membranteller 12
- Steuerleitungsanschluss G ¼ 13
- 13.1 Verschraubung mit Drossel
- 14 Steuerleitung
- Ausgleichsgefäß 15

- 16 Einfüllstutzen
- Membran 20
- 21 Membranbruchanzeige G ¼
- 25 Leckleitungsanschluss G 1/4
- Balgantrieb 30
- 31 Balg mit Unterteil
- 32 Zusatzfedern
- 34 Balgstange
- 35 Traverse

3 T 2513

Tabelle 1: Technische Daten Ventil · Alle Drücke als Überdruck in psi

Ventil		Тур 2412						
Nennweite		NPS ½ bis 2						
Nenndruck			Class 125, 150 oder 300					
Max. zul. Differ	enzdruck Δp	200 psi ²⁾ · 280 psi ³⁾ · 360 psi	200 psi ²⁾ · 280 psi ³⁾ · 290 psi	200 psi ²⁾ · 230 psi				
Max. zul. Tem-	Ventil	vgl.	vgl. ► T 2500 · Druck-Temperatur-Diagramm					
peratur 1)	Ventilkegel	metallisch dichtend: 660 °F · weich dichtend; PTFE: 430 °F weich dichtend; EPDM, FKM: 300 °F · weich dichtend; NBR: 175 °F						
Leckage-Klasse ANSI/FCI 70-2	nach	metallisch dichtend: Leckrate l (≤0,05 % vom C _v -Wert) weich dichtend: Leckrate lV (≤0,01 % vom C _v -Wert)						
Konformität		CE						

¹⁾ Bei FDA-Ausführung: max. zul. Temperatur 140 °F

Tabelle 2: Technische Daten Membran- und Balgantrieb · Alle Drücke als Überdruck in psi

Membranantrieb	Typ 2413							
Antriebsfläche	100 in ²	50 in ²	25 in²	12 in ²	6 in²			
Sollwertbereich	0,75 bis 3,5 psi 1,5 bis 8,5 psi	3 bis 17 psi 10 bis 35 psi ²⁾ 30 bis 75 psi 65 bis 115 bis						
Max. zul. Temperatur ³⁾ Gase 660 °F, jedoch am Antrieb 175 °F · Flüssigkeiten 300 °F, mit Ausgleichsgefäß 660 °F · Dampf mit Ausgleichsgefäß 660 °F								
Sollwertfeder	1750 N 4400 N 8				8000 N			
Balgantrieb	Typ 2413							
Antriebsfläche		5,1 in ²		9,6 in ²				
Sollwertbereich		15 bis 320 psi 10 bis 400 psi		30 bis 85 psi ¹⁾ 75 bis 145 psi				
Max. zul. Temperatur 3)	660 °F							
Sollwertfeder			8000 N					

¹⁾ Sollwertfeder 4400 N

Tabelle 3: Max. zul. Druck am Antrieb

	Sollwertbereiche	Max. zul. Druck über einge- stelltem Sollwert am Antrieb
	0,75 bis 3,5 psi · 1,5 bis 8,5 psi	9 psi
	3 bis 17 psi	19 psi
Membranantrieb	10 bis 35 psi	36 psi
	30 bis 75 psi	73 psi
	65 bis 145 psi · 115 bis 230 psi	145 psi
	30 bis 85 psi · 75 bis 145 psi	94 psi
Balgantrieb	145 bis 320 psi	116 psi
	300 bis 400 psi	29 psi

4 T 2513

²⁾ nur für Class 125

nur für Class 150

in der Ausführung mit Doppelmembran: 14,5 bis 35 psi

³⁾ Bei FDA-Ausführung: max. zul. Temperatur 140 °F

Tabelle 4: Gewichte · Ausgleichsgefäße, Standardausführung in Stahl

Bestell-Nr.	Bezeichnung	Gewicht, ca.
1190-8788	Ausgleichsgefäß 0,7 l	3,5 lbs
1190-8789	Ausgleichsgefäß 1,5 l	5,7 lbs
1190-8790	Ausgleichsgefäß 2,4 l	8,2 lbs

Tabelle 5: C_V-Werte und X_{FZ}-Werte · Kenndaten für Geräuschberechnung nach VDMA 24422 (Ausgabe 1.89)

Nennweite	NPS ½	NPS 3/8	NPS 1	NPS 11/2	NPS 2	NPS 21/2	NPS 3	NPS 4
C _V ¹⁾ , Standardausführung	5	7,5	9,4	23	37	60	94	145
X _{FZ}	0,5	0,45		0,4		0,35		
C _V ¹⁾ , Sonderausführung	0,12 · 0,5 · 1,2 · 3	0,12 · 0,5 · 1,2 · 3 · 5	0,12 · 0,5 · 1,2 · 3 · 5 · 7,5	7,5 · 9,4 · 20	9,4 · 20 · 23	23 · 37	37 · 60	60
C _v -1 ¹⁾ mit Strömungsteiler ST 1	3,5	6	7,2	17	7,2 · 30	30 · 45	30 · 70	45 · 110
C _V -3 ¹⁾ mit Strömungsteiler ST 3			_			30	46	70

bei $C_{\rm V}$ 0,0012 bis 0,05: Ventil mit Mikrogarnitur (nur NPS $\frac{1}{2}$ bis 1) ohne Entlastungsbalg

Tabelle 6: Werkstoffe · Werkstoff-Nr. nach ASTM und DIN EN

Ventil			Typ 2412				
Nenndru	ıck	Class 125		Class 150 · Class 300			
Max. zul	. Temperatur ³⁾	570 °F		660 °F			
Gehäuse	2	Grauguss A126B	Stahlguss A216 WC0	-			
Sitz		CrNi-S	itahl	CrNiMo-Stahl			
Vogel	Werkstoff	CrNi-S	CrNi-Stahl CrNiMo-				
Kegel		PTFE mit 15 % Glasfaser · EPDM · NBR · FKM					
Führung	sbuchse		Graphit				
Entlastui dichtung	ngsbalg/Balgab-	CrNiMo-Stahl					
Antrieb		Тур 2413					
		Membranantriel	o	Balgantrieb			
Membra	nschalen	1.0332 1)		-			
Membran		EPDM mit Gewebeeinlage ²⁾ · FKM für z. B. Mineralöle · NBR		-			
Balggehäuse		-		1.0460/1.4301 (nur Edelstahl)			
Balg		-		CrNiMo-Stahl			

in der korrosionsfesten Ausführung CrNi-Stahl

T 2513 5

²⁾ Standardausführung; Weiteres unter Sonderausführungen

³⁾ Bei FDA-Ausführung: max. zul. Temperatur 140 °F

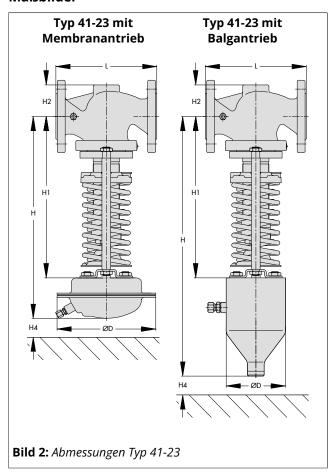
Tabelle 7: Maße in inch und Gewichte in lbs

					Univers	sal-Druck	mine	derer	Typ 4	1-23				
Nei	nnwei	ite		NPS ½	NPS ³ /	8 NPS	51	NPS	1½	NF	PS 2	NPS 2½	NPS 3	NPS 4
			Class 125		_	7,2	<u>'</u> ''	0.	711	1	OII	10.0"	11 711	12.0"
Län	Länge L		Class 150		7,2"			8,	/	10"		10,9"	11,7"	13,9"
			Class 300	7,5"	7,6"	7,8	8"	9,	3"	10),5"	11,5"	12,5"	14,5"
Höł	Höhe H1			13,2"				15,4	4"		20	,4"	21,3"	
Höł	Höhe Schmi		iedestahl	2,1"	-	2,8	8"	3,	6"	3,	,9"	-	5"	-
H2		Stahlg	guss		1,7"				2,8	8"		3,	9"	4,6"
Höł	ne H4								3.9)"				
Aus	sführu	ıng m	it Membran	antrieb Ty	/p 2413									
Nei	nnwei	ite			NPS ½	NPS 3/8	NI	PS 1	NPS	11/2	NPS 2	NPS 21	NPS 3	NPS 4
	0.75		Höhe H 3)4)			17,5"				19,	7"		24,7"	25,6"
	0,75 3,4 p		Antrieb						ØD = 1	15", <i>F</i>	A = 100 i	n²		
	3, . p	.3.	Ventil-Fede	rkraft F						175	0 N			
	4.5.1	1,5 bis 8,5 psi	Höhe H 3)4)			17,5"				19,	7"		24,7"	25,6"
	-		Antrieb		ØD = 15", A = 100 in ²									
	0,5 p	.3.	Ventil-Fede	rkraft F			4400 N							
	21:	3 bis 17 psi	Höhe H 3)4)		16,9" 18,9" 23,9" 25'									25"
			Antrieb		ØD = 11,2", A = 50 in ²									
he	17 65	5 1	Ventil-Fede	rkraft F						440	0 N			
Sollwertbereiche	101:		Höhe H 3)4)		16,9" 19,1" 24,1"						24,1"	25"		
rtbe	10 bi 35 ps		Antrieb		$ØD = 8,9$ ", $A = 25 \text{ in}^2$									
We	33 ps		Ventil-Fede	rkraft F	4400 N									
Sol	20.1.		Höhe H ³⁾⁴⁾		16,1" 18,3"							23,3" 24		
	30 bi 75 ps		Antrieb			ØD = 6,7", A = 12 in ²								
	/ 5 65		Ventil-Fede	rkraft F		4400 N								
	CE 1-:		Höhe H 3)4)		16,1" 18,3"							23,3"	24,2"	
	65 bi 145 p		Antrieb		ØD = 6,7", A = 6 in ²									
			Ventil-Fede	rkraft F					4400 N					
	115	L:_	Höhe H 3)4)			16,1"				18,	3"		23,3"	24,2"
	115 k		Antrieb						ØD =	6,7",	, A = 6 ir	l ²		
			Ventil-Fede	rkraft F	8000 N									
Gev	wicht f	ür Au	sführung mit	Membran	antrieb T	yp 2413								
eiche	0,75 8,5 p				54,7	5	7,1		76,	5	84,9	123,7	140,7	162,5
Sollwertbereiche	3 bis 35 ps		Gewicht ¹⁾ ,	ca. lbs	45,5	5	0,3		68,	6	77	115,8	132,8	154,6
Sollw	30 bi 230 p				29,1	3	1,6		51		58,2	97	114	135,8

bezogen auf Class 150; +10 % für Class 300

6 T 2513

²⁾ Ausführung mit Doppelmembranantrieb: 14,5 bis 35 psi


Bei Doppelmembranantrieb für Autoklavenregler: H = +2"

Bei Doppelmembranantrieb für erhöhte Sicherheit: H = +1,3"

Aus	sführung m	it Balgantrieb Typ 24	13									
Nei	nnweite		NPS ½	NPS 3/8	NPS 1	NPS 11/2	NPS 2	NPS 21/2	NPS 3	NPS 4		
	201:	Höhe H		21,7"		23,8"		28	28,8"			
	30 bis 85 psi	Antrieb		Ø D = 4,7", A = 9,6 in ²								
	05 psi	Ventil-Federkraft F				440	0 N					
۵,	75.1.	Höhe H		21,7"		23,	,8"	28	,8"	29,7"		
Sollwertbereiche	75 bis 145 psi	Antrieb				Ø D = 4,7",	A = 9,6 in	2				
oere	1 13 ps.	Ventil-Federkraft F				800	0 N					
ert	4.45.1.	Höhe H		21,1"		23,	,2"	28,2"		29,1"		
<u>≦</u>	145 bis 320 psi	Antrieb			\emptyset D = 3,5", A = 5,1 in ²							
S	S_S PS.	Ventil-Federkraft F				8000 N						
	2001:	Höhe H		21,1"		23,2"		28,2"		29,1"		
	300 bis 400 psi	Antrieb				2						
	100 ps.	Ventil-Federkraft F	8000 N									
Gev	vicht für Au	sführung mit Balgantri	eb									
oereiche	30 bis 145 psi	– Gewicht ¹), ca. lbs	49,9	52,3	53,4	71,7	80	133,4	150,4	172,2		
Sollwertbereiche	145 bis 400 psi	Gewicht 7, ca. ibs	40,2	42,6	43,7	62	70,4	106,8	135,8	157,7		

bezogen auf Class 150; +10 % für Class 300

Maßbilder

T 2513 7

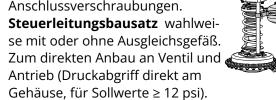
Einbau

Im Standardfall die Regler mit nach unten hängendem Antrieb montieren, dabei die Rohrleitungen waagerecht, zum Kondensatablauf nach beiden Seiten leicht abfallend, verlegen.

- Die Durchflussrichtung muss dem Pfeil auf dem Gehäuse entspre-
- Steuerleitung den Verhältnissen vor Ort anpassen. Die Steuerleitung gehört nicht zum Lieferumfang. Auf Kundenwunsch wird ein Steuerleitungsbausatz für den direkten Druckabgriff am Gehäuse (vgl. Abschnitt Zubehör) angeboten.

i Info

Weitere Details zum Einbau in ► EB 2512.

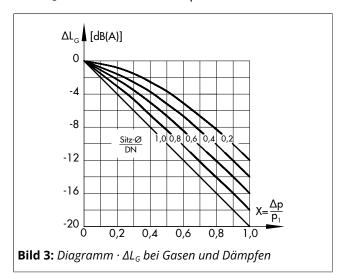

Zubehör

Im Lieferumfang enthalten:

Drosselverschraubung für 3%,,-Steuerleitung.

Gesondert zu bestellen:

- Adapter G ¼ auf ¼ NPT, diverse Anschlussverschraubungen.
- Steuerleitungsbausatz wahlweise mit oder ohne Ausgleichsgefäß. Antrieb (Druckabgriff direkt am


Ausgleichsgefäß zur Kondensatbildung sowie zum Schutz der Stellmembran vor zu hohen Temperaturen; erforderlich bei Dampf und bei Flüssigkeiten über 300 °F.

Weitere Details zum Zubehör in ► T 2595.

Ventilspezifische Korrekturglieder

ΔL_G · bei Gasen und Dämpfen:

ΔL_F · bei flüssigen Medien:

$$\Delta L_F = -10 \cdot (x_F - x_{FZ}) \cdot y$$

$$mit \quad x_F = \frac{\Delta p}{p_1 - p_V} \quad und \quad y = \frac{K_V}{K_{VS}}$$

Kenndaten für die Durchflussberechnung nach DIN EN 60534, Teil 2-1 und 2-2:

- $\mathbf{F_L} = 0.95; \mathbf{x_T} = 0.75$
- **X**_{FZ} · akustisch bestimmte Armaturenkenngröße
- C_v-1, C_v-3 · bei Einbau eines Strömungsteilers ST 1 oder ST 3 als geräuschminderndes Bauelement

Erst bei ca. 80 % des Ventilhubs beginnt eine Abweichung der Durchflusskennlinie gegenüber Ventilen ohne Strömungsteiler.

Bestelltext

Universal-Druckminderer Typ 41-23

Ausbaustufe ...,

NPS ...,

Gehäusewerkstoff ...,

Class ...,

C_v-Wert ...,

Sollwertbereich ... psi,

evtl. Zubehör ... (vgl. ► T 2595),

evtl. Sonderausführung ...