TYPENBLATT TB 20a

BR 20a · PTFE-ausgekleideter Kugelhahn

DIN- und ANSI-Ausführung

CE

Anwendung

Dichtschließender Kugelhahn mit PTFE-Auskleidung für den Einsatz in aggressiven Medien, insbesondere bei hohen Anforderungen in Chemieanlagen:

- Nennweite DN 15 bis 200 und NPS½ bis 8
- Nenndruck PN 16 und cl150
- Temperaturen -10 °C bis +200 °C (14 °F bis 392 °F) (Weitere Temperaturbereiche optional)

Die Armatur besteht aus einem PTFE-ausgepleideten Kugelhahn mit einem pneumatischen Schwenkantrieb, einem Handgetriebe oder einem Handhebel.

Die im Baukastensystem ausgeführten Geräte weisen folgende besonderen Eigenschaften auf:

- Voller Durchgang, hohe KV-Werte
- Gehäuse aus EN-JS 1049 (0.7043 / A395) bei Nennweiten ab DN 25 / NPS1 bzw. 1.0460 / A105 bei Nennweiten bis DN 20 / NPS¾ mit PTFE-Auskleidung (min. 5 mm Wandstärke)
- Austauschbare PTFE-Dichtringe
- Kugel und Schaltwelle einteilig aus Edelstahl mit PTFE-Ummantelung (min. 5 mm Wandstärke)
- Hysteresefrei, ideal f
 ür Regelaufgaben
- Wartungsfreie Schaltwellenabdichtung durch eine tellerfedervorgespannte PTFE-Dachmanschettenpackung DN15-DN100/NPS1/2-NPS4
- Dachmanschettenpackung mit aufgesetzter Labyrinthdichtung und Überbrille für die Möglichkeit einer manuellen Nachstellung DN150-200/ NPS6-NPS8
- "Auf-Zu" Betrieb, Leckrate A nach DIN EN 12266-1, "blasendichte Ausführung"
- Ausblassichere Schaltwelle
- Anbauflansch f
 ür Antriebe nach DIN ISO 5211
- DIN-Baulänge nach DIN EN 558
- ANSI-Baulänge nach ASME B16.10
- Hochwertige 2 Komponenten PU-Beschichtung (RAL 1019) als Schutz gegen korrosive Atmosphäre und Korrosionsbildung.

Ausführungen

Kugelhahn wahlweise in folgenden Ausführungen:

- Kugelhahn mit Handhebel (DN 15 bis 100 oder NPS½ bis 4)
- Kugelhahn mit Handgetriebe
- Kugelhahn mit pneumatischem Schwenkantrieb (Einzelheiten siehe jeweiliges Datenblatt)
- Nach Kundenwunsch

Bild 1: PTFE-ausgekleideter Kugelhahn BR 20a

Bild 2: PTFE-ausgekleideter Kugelhahn BR 20a mit Schwenkantrieb BR 31a

PFEIFFER Chemie-Armaturenbau GmbH · Hooghe Weg 41 · 47906 Kempen

Telefon: 02152 2005-0 · Telefax: 02152 1580 E-Mail: sales-pfeiffer-de@samsongroup.com · Internet: www.pfeiffer-armaturen.com

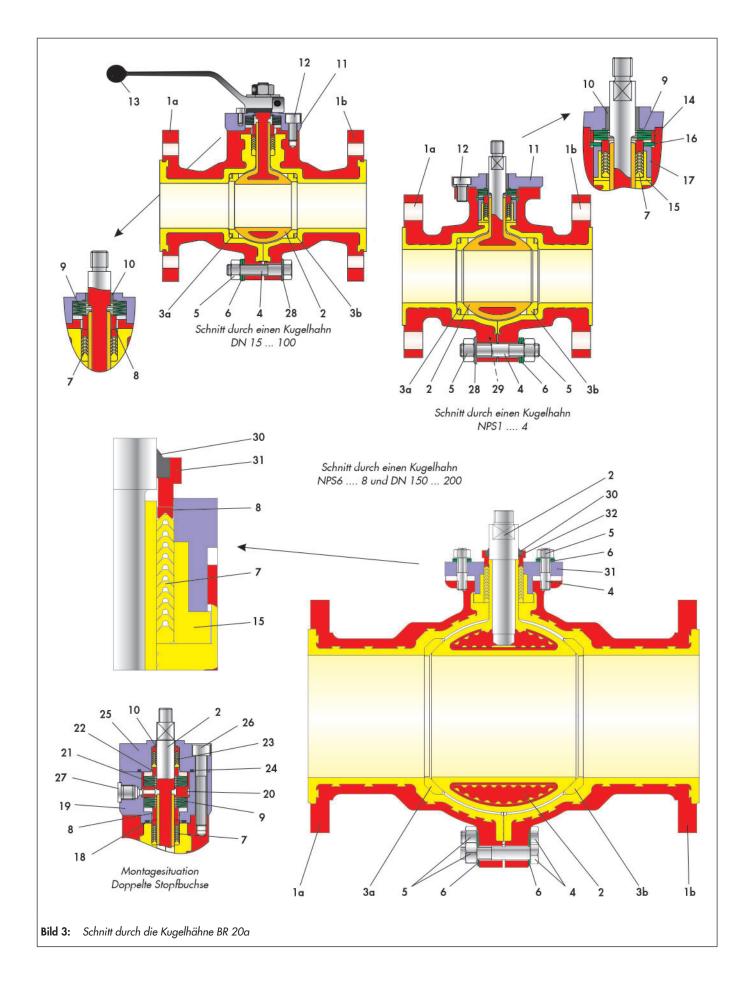


Tabelle 1: Stückliste

Pos.	Bezeichnung
1	Gehäuse mit Auskleidung
2	Kugel mit Ummantelung
3	Dichtring
4 1)	Schraube / Stiftschraube
5 1)	Mutter
6	Tellerfeder
7	Dachmanschettenpackung
8	Druckring
9	Tellerfedersatz
10	Lagerbuchse
11	Stopfbuchsflansch

Pos.	Bezeichnung
12	Schraube
13	Handhebel
14	Zentrierring
15	PTFE-Buchse
16	Tellerfeder
17	Buchse
18	O-Ring
19	Stopfbuchsunterteil
20	Distanzrolle
21	Tellerfedersatz
22	Druckring
	·

Pos.	Bezeichnung
23	Dachmanschettenpackung
24	O-Ring
25	Stopfbuchsoberteil
26	Schraube
27	Verschlussschraube
28	Scheibe
29	Stift
30	Abstreifring
31	Brille
32	Überbrille

¹⁾ Abhängig von der Nennweite können Stiftschrauben mit Muttern oder Schrauben verbaut sein

Weitere Ausführungen / Optionen

- Gehäuse aus 1.4571
- Ausgekleideter Bodenablasshahn siehe BR 21a
- · Regelkugelhahn durch Kennliniendichtring
- Auskleidung mit speziellen PTFE-Compounds
- Auskleidung PTFE-leitfähig
- Heiztasche aus Edelstahl
- Schaltwellenabdichtung mit zwei Dachmanschettenpackungen und Prüfanschluss (doppelte Stopfbuchse)
- Flanschnut nach DIN EN 1092
- Verschiedene Kugel- und Dichtringwerkstoffe
- FDA-Konformes Dichtmaterial
- Kunden angepasste Ausführungen

Funktions- und Wirkungsweise

Die Kugelhähne der Baureihe BR 20a können bidirektional bei vollem Durchgang durchströmt werden.

Die Kugel (2) mit ihrem zylindrischen Durchlass ist um die Schaltwelle schwenkbar gelagert. Der Schwenkwinkel der Kugel beeinflusst den Durchfluss über die zwischen Gehäuse (1) und Kugelkanal freigegebenen Fläche. Bei geöffnetem Kugelhahn wird der volle Querschnitt freigegeben.

Die Abdichtung der Kugel in dem mit PTFE ausgekleideten Gehäuse erfolgt über austauschbare Dichtringe (3).

Die Schaltwelle ist durch eine wartungsfreie, federbelastete PTFE-Dachmanschettenpackung (7) abgedichtet. Die Vorspannung übernehmen Tellerfedern (9) die oberhalb der Packung angeordnet sind.

Die nach außen geführte Schaltwelle wird bis DN 100 / NPS4 mit einem Handhebel (13) ausgerüstet. Optional kann ein pneumatischer Schwenkantrieb oder ein Handgetriebe aufgebaut werden.

Sicherheitsstellung

Je nach Anbau des pneumatischen Schwenkantriebs hat der Kugelhahn zwei Sicherheitsstellungen, die bei Druckentlastung sowie bei Ausfall der Hilfsenergie wirksam werden:

• Kugelhahn mit Antrieb "Feder schließt":

Bei Ausfall der Hilfsenergie wird der Kugelhahn geschlossen. Das Öffnen des Kugelhahns erfolgt bei steigendem Stelldruck gegen die Kraft der Federn.

• Kugelhahn mit Antrieb "Feder öffnet":

Bei Ausfall der Hilfsenergie wird der Kugelhahn geöffnet. Das Schließen des Kugelhahns erfolgt bei steigendem Stelldruck gegen die Kraft der Federn.

i Info

Der Kugelhahn kann auch für Regelzwecke eingesetzt werden. Dabei ist jedoch das Datenblatt ▶ DB20a-kd zu beachten.

i Info

Beim Kugelhahn ist vor der Verwendung in Ex-Bereichen die Einsetzbarkeit gemäß ATEX 2014/34/EU an Hand der Einbau- und Bedienungsanleitung ► EB20a zu beachten!

Optionale Werkstoffkombinationen

Für die optimale Anpassung an herrschende Betriebsbedingungen kann der Kugelhahn der BR 20a hinsichtlich der verwendeten Werkstoffe (Gehäuse, Schaltwelle, Kugel und Abdichtungen) applikationsbezogen modifiziert werden.

Zusatzausstattungen und Anbauteile

Für die Stellgeräte ist folgendes Zubehör wahlweise einzeln oder in Kombinationen erhältlich:

- **Abschließvorrichtung**
- Schaltwellenverlängerung (100 mm Standard)
- Pneumatische oder elektrische Schwenkantriebe
- Stellungsregler
- Endschalter
- Magnetventil
- Filter-Reduzierstation
- Heizmantel auf Anfrage für diverse Nennweiten verfügbar (nicht bei ANSI-Ausführungen)
- Kennliniendichtring

Andere Anbauten nach Spezifikation auf Anfrage möglich.

Vorteile des tellerfedervorgespannten Dichtsystems

- Wartungsfrei und selbstnachstellend
- Höchste Dichtigkeit, selbst bei extremen Druck- und Temperaturschwankungen
- Längere Standzeiten

Zusammenfassend: Sehr hoher Wirtschaftlichkeitsgrad!

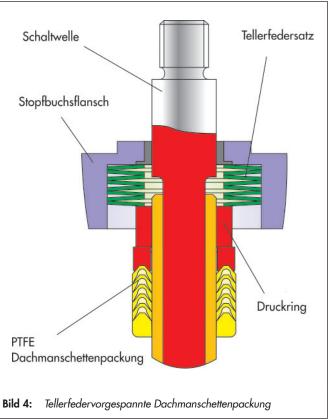


Tabelle 2: Allgemeine technische Daten

	DIN ANSI DN 15 200 NPS½ 8 PN 16 cl150 -10 °C +200 °C (14 °F 392 °F) PTFE Leckrate A nach DIN EN 12266-1, Prüfung P12 DIN EN 1092-2 Form B ASME B16.5 Tellerfedervorgespannte PTFE-Dachmanschettenpackung / Dachmanschettenpackung mit aufgesetzter Labyrinthdichtung und Überbrille DIN EN 558 Reihe 1 DN 15 150 ASME B16.10 Short Pattern A NPS½ 6 (ohne NI		
	DIN	ANSI	
Nennweite	DN 15 200	NPS1/2 8	
Nenndruck	PN 16	cl150	
Temperaturbereich	-10 °C	+200 °C (14 °F 392 °F)	
Kugelabdichtung		PTFE	
Leckrate	Leckrate A nach	DIN EN 12266-1, Prüfung P12	
Flansche	DIN EN 1092-2 Form B	ASME B16.5	
Stopfbuchspackung	Tellerfedervorgespan Dachmanschettenpackung mit	nte PTFE-Dachmanschettenpackung / aufgesetzter Labyrinthdichtung und Überbrille	
Baulänge	DIN EN 558 Reihe 1, DN 15 150 DIN EN 558 Reihe 12, DN 200	ASME B16.10 Short Pattern A, NPS½ 6 (ohne NPS¾) ASME B16.10 Short Pattern B, NPS¾ und NPS8	

Tabelle 3: Werkstoffe

		DIN	ANSI				
Gehäuse	DN 15 200 NPS½ ¾	1.0460 mit PTFE-Auskleidung (min. 5 mm)	A105 mit PTFE-Auskleidung (min. 5 mm)				
	ab DN 25 / NPS1	EN-JS 1049 / 0.7043 mit PTFE-Auskleidung (min. 5 mm)	A395 mit PTFE-Auskleidung (min. 5 mm)				
Kugel	/ Schaltwelle	1.4313 / 1.4317 mit PTFE-Ummantelung (min. 5 mm)					
С	Dichtringe	PTFE					
Stopfl	ouchspackung	PTFE - V-Ring-Packung					
Tell	erfedersatz	1.8159 Delta Tone besch	hichtet				
La	gerbuchse	PTFE mit 25% Kohl	е				
Gehä	useabdichtung	PTFE					
Lo	ackierung	2-Komponenten Polyurethan graubeige (RAL 1019)					

Druck-Temperatur Diagramm

Der Einsatzbereich wird durch das Druck-Temperatur Diagramm bestimmt. Prozessdaten und Medium können die Werte des Diagramms beeinflussen.

Druck-Temperatur Diagramm für PN 16

Tabelle 4: Druck- Temperatur Werte

		Temperatur in °C											
DN	-10	0	25	50	75	100	125	150	175	200			
15	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3			
20	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3			
25	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3			
40	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3			
50	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3	Druck in bar		
80	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3	24.		
100	16.0	16.0	16.0	16.0	16.0	13.6	11.2	8.9	7.0	5.3			
150	16.0	16.0	16.0	15.2	12.0	9.7	7.3	5.6	4.3	3.0			
200	16.0	16.0	16.0	15.2	12.0	9.7	7.3	5.6	4.3	3.0			

Druck-Temperatur Diagramm für Class 150

Tabelle 5: Druck- Temperatur Werte

		Temperatur in °C												
NPS	-10	0	25	50	75	100	125	150	175	200				
1/2	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3				
3/4	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3				
1	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3				
11/2	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3				
2	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3	Druck in bar			
3	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3	III Dui			
4	17.2	17.2	17.2	17.0	16.0	13.6	11.2	8.9	7.0	5.3				
6	17.2	17.2	17.2	15.2	12.0	9.7	7.3	5.6	4.3	3.0				
8	17.2	17.2	17.2	15.2	12.0	9.7	7.3	5.6	4.3	3.0				

Tabelle 6: kvs-Werte und Cv-Werte

DN	15	20	25	40	50	80	100	150	200
NPS	1/2	3/4	1	1 1/2	2	3	4	6	8
kvs	10	10	45	105	163	402	587	1554	2670
Cv	12	12	52	122	190	467	682	1810	3111

Tabelle 7: Drehmomente und Losbrechmomente:

	Differenzdruck	ς	∆p in bar	0	5	10	16	
DN	NPS	zul. Drehmoment MDmax. in Nm	erf. Drehmoment Md in Nm	Losbrechmoment Mdl in Nm				
15	1/2	126	6	10	10	10	12	
20	3/4	126	6	10	11	12	15	
25	1	140	5	7.5	10	14	17	
40	11/2	140	10	15	15	18	22	
50	2	140	15	22.5	23	28	34	
80	3	608	38	57	62	80	90	
100	4	833	60	90	110	130	140	
150	6	1570	210	300	380	450	540	
200	8	6515	270	380	430	505	570	

Die oben aufgeführten Drehmomente beziehen sich auf das Öffnen des Kugelhahns bei Differenzdruck mit Wasser, versetzt mit Korrosionsinhibitoren bei Raumtemperatur und der Dauer der Nichtbetätigung von einem Tag.

Da Temperatur, Druck, Medium sowie Schalthäufigkeiten und Stillstandzeiten einen großen Einfluss auf die entstehenden Drehmomente haben, sind entsprechende Faktoren bei der Auswahl und Auslegung des Antriebes zu berücksichtigen. Im Zweifelsfalle sollte Rücksprache mit Pfeiffer gehalten werden.

Die aufgeführten maximal zulässigen Drehmomente gelten für den in Tabelle 3 aufgeführten Standardwerkstoff.

Maße und Gewichte

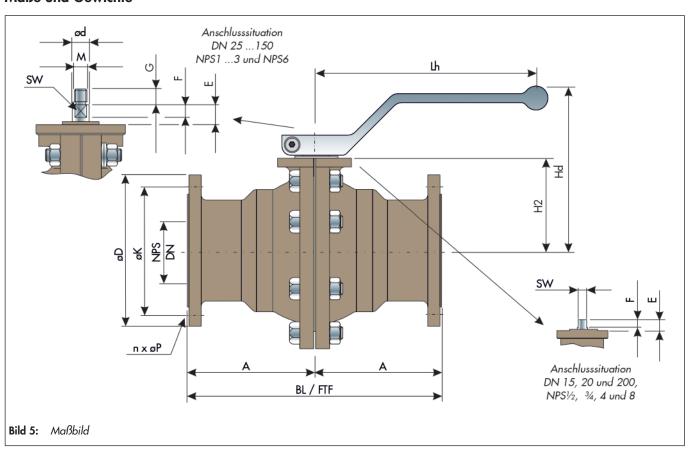


Tabelle 8: Maße in mm und Gewichte in kg bei DIN-Ausführung

Nennweite DN	15	20	25	40	50	80	100	150	200
BL / FTF	130	150	160	200	230	310	350	479	457.5
A	65	75	80	100	115	155	175	239.5	228.75
H ₂	50	61.2	82	96	103	138.5	161	210.5	265
Hd	122	122	150	159	164	195.5	213	-	-
Ød	16.8	16.8	16.8	16.8	16.8	24	28	36	55
ØD	95	105	115	150	152	199	219	285	340
E	19	19	19	19	19	23	19	24.5	42
F	12	12	12	12	12	12	12	18	34
G	-	-	15	15	15	18	18	17	-
М	-	-	M12	M12	M12	M16	M16	M24	-
Lh	220	220	220	183.5	183.5	365	365	-	-
SW	12	12	12	12	12	16	20	24	34
DIN ISO Anschluss	F05	F05	F05	F05	F05	F07	F07	F14	F16
ØK	65	75	85	110	125	160	180	240	295
nxØP	4x14	4x14	4×14	4x18	4x18	8×18	8×18	8x22	8x22
Gewicht	5	6	6	12.4	14	26	37	83.6	145.7

 Tabelle 9:
 Maße in mm und Gewichte in kg bei ANSI-Ausführung

Nennweite NPS	1/2	3/4	1	11/2	2	3	4	6	8
BL / FTF	108	150	127	165	178	203	229	267.4	419
A	54	75	63.5	82.5	89	101.5	114.5	133.7	209.5
H2	48	61.2	82	96	103	138.5	153	210	265
Hd	124	124	152	172	179	185.5	213	-	-
Ød	16.8	16.8	16.8	16.8	16.8	24	28	36	55
ØD	90	100	108	127	152.4	190.5	228.6	279.4	343
E	19	19	19	19	19	23	19	25	65
F	12	12	12	12	12	12	12	18	34
G	-	-	15	15	15	18	-	17	-
М	-		M12	M12	M12	M16	-	M24	-
Lh	220	220	220	220	220	365	365	-	-
SW	12	12	12	12	12	16	20	24	34
DIN ISO Anschluss	F05	F05	F05	F05	F05	F07	F07	F14	F16
ØK	60.3	69.9	79.2	98.6	120.7	152.4	190.5	241	298
nxØP	4x15.7	4x15.7	4x15.7	4x15.7	4x19.1	4x19.1	8x19.1	8x22.2	8x22.2
Gewicht	4.5	5	5.5	9.5	11	18	29	64.3	137.3

Auswahl und Auslegung des Kugelhahns

- 1. Festlegung der erforderlichen Nennweite
- 2. Auswahl der Armatur unter Beachtung der Tabelle 2, Tabelle 3 und dem Druck-Temperatur Diagramm
- 3. Auswahl des Stellantriebes mit Hilfe der Tabelle 5
- 4. Auswahl der Zusatzausstattungen

Bestelltext

PTFE-ausgekleideter Kugelhahn Typ: BR 20a

Nennweite: DN / NPS

Nenndruck: PN / cl

Evtl. Sonderausführung

Handhebel bzw. Stellantrieb Fabrikat:

Stelldruck: . . . bar

Sicherheitsstellung:

Grenzsignalgeber Fabrikat:

Magnetventil Fabrikat:

Stellungsregler Fabrikat:

Sonstiges: . . .

i Info

Auftragsbezogene Details und von dieser techn. Beschreibung abweichende Ausführungen sind bei Bedarf der entsprechenden Auftragsbestätigung zu entnehmen.

Zugehörige Dokumente

- Einbau- und Bedienungsanleitung
- Sicherheitshandbuch

- ► EB 20a
- ► SH 20
- ▶ TB 31a